

The 15th Korea-US Forum on Nanotechnology

Soft Micro/Nano-structured Sensors for Flexible and Wearable Physical Sensing

Inkyu Park, Ph.D.

Associate Professor, Department of Mechanical Engineering Co-director, Mobile Sensor and IT Convergence (MOSAIC) Center Director, Micro and Nano Transducer (MINT) Laboratory Korea Advanced Institute of Science and Technology (KAIST)

Sensing in Flexible / Wearable Electronics

Human Health Information → Wearable Sensors → IoT

Wearable Human Motion Detection

Entertainment

Smart glove; surgical robot, entertainment

Sports dynamics

Personal health care; rehabilitation

- Optical motion capture
- Goniometer

PROF. PARK'S KAIST MICRO AND NANO

TRANSDUCER LABORATARY

MEMS Accelerometer

- Infrared imaging
- Electrostatic detection
- Stretchable physical sensing

Wearable Human Motion Detection

- Critical requirements for wearable / stretchable motion sensing:
 - ✓ High Sensitivity
 - ✓ Quick response
 - ✓ High stretchability
 - ✓ High durability
 - ✓ Small hysteresis

Elastomer with high stretchability and flexibility

Electrically or optically sensitive materials

Stretchable Strain Sensor based on Metallic Nanoparticles J. Lee, I. Park, et al., Nanoscale 6, 11932-11939 (2014)

Stretchable Strain Sensor based on Metallic Nanoparticles

Stretchable strain sensing based on <u>cracking of metal nanoparticle</u> <u>thin film</u> on PDMS

- ✓ Simple & easy fabrication process
- ✓ Low-cost process
- ✓ High sensitivity (Maximum gauge factor ~ 10 in tensile strain)
- ✓ Sensitive to compressive strain (Maximum gauge factor ~ 13.6)
- ✓ High stretchability (50% tensile strain)

KAIST

Reversible Opening & Closure of Micro-Cracks

Stretchable Strain Sensing by AgNP Thin Film Sensor

OC

Human Finger Motion Detection

JUL 2018 © Prof. Inkyu Park

Detection of Swallowing Motion in Adam's Apple

Silver Nanowire – Elastomer Composite : Stretchable Strain Sensor

M. Amjadi, I. Park, et al., ACS Nano 8, 5154-5163 (2014)

Silver Nanowire – Elastomer Composite : Stretchable Strain Sensor

Silver Nanowire – Elastomer Composite : Stretchable Strain Sensor

Silver Nanowire – Elastomer Composite : Stretchable Strain

VideoMach unregistered

Wireless Smart Glove System for Human Motion Detection

- Excellent agreement between loading profile and sensor response.
- > Wireless communication system for DAQ and data transmission.
- Integrated glove and communication system.

KAIST

Wireless Smart Glove System for Human Motion Detection

Flexible Pressure Sensors

PROF. PARK'S KAIST MICRO AND NANO

RANSDUCER LABORATARY

➔ Rigid sensors have limitations in deformability and conformability to

arbitrary surfaces for wearable device applications.

→ Flexibility of pressure sensors is required for advanced future applications in terms of human-motion-induced pressure sensing.

Flexible Pressure Sensors

- ➔ Flexible pressure sensors must satisfy:
 - (1) high sensitivity for low pressure sensing
 - (2) wide span up to medium-pressure for tactile pressure sensing

Microporous Elastomer as Capacitive Sensing Element D. Kwon, I. Park, et al., ACS Appl. Mater. Inter. 8, 1901 (2016)

KAIST MICRO AND NANO

Microporous Elastomer as Capacitive Sensing Element

Piezoresistive Pressure Sensors using Microporous Elastomer S. Kim, I. Park, et al., in review (2018)

Piezoresistive Pressure Sensors using Microporous Elastomer

- Flexible CNT-coated porous elastomer structure acts as a sensing structure of pressure sensor.
- CNT-coated porous elastomer structure has many interconnected micro pores which have CNT-coated surfaces, and they forms electrical path ways.
- When pressure is applied, as micro pores are squeezed.
 - \rightarrow New electrical contact between CNT networks is generated.
 - \rightarrow Resistance of the pressure sensor is decreased.

KAIST

Piezoresistive Pressure Sensors using Microporous Elastomer

Hysteresis due to Viscoelasticity

- Hysteresis profiles of loading/unloading of 10-70% of compressive strain.
- Porous elastomer structure could minimize the viscoelastic property of elastomer.

→ No significant hysteresis is observed between loading and unloading state.

Piezoresistive Pressure Sensors using Microporous Elastomer

Transient Response

JUL 2018 © Prof. Inkyu Park

Application to Flexible Piano

Movie1: Flexibility

Movie 2: Do to Do

Movie 3: Sound volume control

Movie 4: Fast response

Movie 5: Harmony

Movie 6: Music rendering

<Walking>

Electrical Impedance Tomography + Flexible 3D Strain Sensor H. Lee, I. Park, J. Kim, et al., Scientific Reports 7, 39837 (2017)

Electrical Impedance Tomography + Flexible 3D Strain Sensor

Scientific Reports (2017), Collaboration with Prof. Jung Kim @ KAIST

Electrical Impedance Tomography + Flexible 3D Strain Sensor

Self-Powered Pressure & Human Motion Sensor

D. Kwon, I. Park, et al., in review (2018)

Sensing Mechanism

90

Δ۱/۱ ₀	rent Transparent Tra rent Tra rent Tra rent Tra rent Tra rent Transparent Tran rent Transparent Tran	tent Transparent Tra tent Transparent Tra tent Transparent Tra tent Transparent Tra tent Transparent Tra tent Transparent Tra tent Transparent Tra	rent Transparent Trai rent Trai rent Trai rent Trai rent Trai rent Trai rent Transparent Trai rent Transparent Trai
			generated by solar cell
	unloading	loading	unloading
		Time	

Porous elastomer is used as a pressure-responsive light transmission medium.

Self-powered Pressure Sensor

Light source

ကင

Pressure-responsive porous Ecoflex film

Pressure

500 µm

Thin film solar cell

Transmittance of Porous Ecoflex Film

Pressure-Response Curve

PROF. PARK'S KAIST MICRO AND NANO

90

→ High sensitivity: S_p=0.101kPa⁻¹ (~100 times higher than solid)
→ Great linearity: R² = 0.9950
→ Wide span: whole tactile pressure range (>100kPa)

Dynamic Pressure Response

✓ Dynamic pressure response in different pressure scale

→ Great match between input & output profile

Response Time and Recovery Time

Detection of Joint Motion in Real-Time

Detection of Joint Motion in Real-Time

Summary & Outlook

- Flexible and stretchable sensors will play a crucial role in the wearable human detection and user interface applications.
- Today, I have introduced the following technologies on softmicro/nanostructure based flexible and stretchable sensors:
 - 1. Stretchable strain sensors based on metal nanoparticle thin films with numerous micro-cracks
 - 2. Stretchable strain sensors based on metal nanowire percolation networks
 - 3. Stretchable strain sensor array based on carbon-nanotube network
 - 4. Soft pressure sensors based on high piezocapacitive properties of porous elastomer materials
 - 5. Soft pressure sensors based on high piezoresistive properties of porous elastomer CNT nanocomposite
 - 6. Multi-contact 3D strain mapping sensor based on nanocomposite and electrical impedance tomography

Acknowledgement

MINT LAB members

Funding Sources

PROF. PARK'S KAIST MICRO AND NANO TRANSDUCER LABORATARY

Collaborators

- Prof. Jung Kim, Prof. Taeksoo Kim, Prof. Seunghwa Ryu, Prof. Jung Yong Lee, Prof. Sang Woo Han, Prof. Seok Woo Jeon, Prof. Hyung Joon Yoo, Prof. Yeon Sik Jung, and Prof. Yoon Sung Nam (KAIST)
- Dr. Jun-Ho Jeong, Dr. Eungsug Lee (KIMM)
- Prof. Joon Beom Seo (Asan Medical Center)
- Prof. Jongmin Shim (Univ. Buffalo)
- Prof. Metin Sitti (Max Planck Inst.)
- Prof. Keun Han Park (Univ. of Utah)

Thank you! inkyu@kaist.ac.kr http://mintlab1.kaist.ac.kr

